

Electrical Aerospace Ground Equipment (EAGE)

Paul Jaffe
Electronics Engineer
NRL
202-767-6616
jaffe@ssdd.nrl.navy.mil

Top Level Requirements

- Provide ISC Electrical Aerospace Ground Equipment (EAGE) and Support ISC Box Level Testing, Integration, and Validation
- Provide Spacecraft EAGE, Electrical Launch Support Equipment (ELSE) and Support System Level Spacecraft Integration, Test, and Validation Through Launch Base Operations
- Provide a Spacecraft Simulator (SATSIM) and Support Flight Software Development and Mission Operations
- Ensure Safety of Brassboard and Flight Hardware During All Phases

Current Baseline/Approach (1 of 8)

- Overall Testing and Integration Approach
 - Use a VME-Based Chassis and Sun Workstations Running Test Software That Utilizes Scripting and Allows for Commanding and Telemetry Display
 - Employ Automated Testing Using Scripting
 - Protect Brassboard and Flight Hardware by
 - Observing Safe Grounding and Static-Sensitive Handling Procedures
 - Utilizing Bus Protection Units (BPUs) When Powering Spacecraft Systems and Subsystems

Current Baseline/Approach (2 of 8)

- ISC Testing and Integration
 - Interfaces to Be Addressed
 - RS-232 (Processor Test Port)
 - CMD/TLM Links (Clock and Data)
 - Power (28 VDC)
 - Data Recorder Control Port
 - Data Recorder Data Port
 - IMU, Sun Sensor Inputs (ACS/RCS)
 - Spacecraft Subsystem CMD/TLM

Current Baseline/approach (3 of 8)

Current Baseline/Approach (4 of 8)

- FAME Integration and Test 1 (FIT1)
 - SBS Power 4E Processor
 - SBS 1553 Card ABI-V6-2
 - SEI Command Encoder Unit
 - Avtec Data Decoder RSDEC (Framesync)
 - Datum Timer Card BC366
 - To Be Added:
 - General Standards
 Serial Card
 - TBD Mission Data I/F
 - TBD S/C I/O I/F

Current Baseline/Approach (5 of 8)

- Spacecraft EAGE
 - Expand/Change ISC EAGE to Address Spacecraft Interfaces
 - Interfaces to Be Addressed
 - ISC Test Port SBS Power 4E
 - S-Band Transponder RF EAGE (Not Shown)
 - Star Trackers
 Depends on Manufacturer
 - Sun SensorSun Lamp
 - Battery Kepco BOP 36-12M
 - Solar Arrays HP E4350B -
 - Bus Protection for Power Supplies Silver Engineering BPU

Current Baseline/Approach (6 of 8)

Spacecraft EAGE Diagram

Current Baseline/Approach (7 of 8)

- ELSE
 - Use Similar Approach to Spacecraft EAGE, Remove Unnecessary Functions
 - Provide Spacecraft Support Through Umbilical Cord
 - Support Battery Charging HP 6032A-J01
 - Support Spacecraft Command
 - Ordnance Control Functions:
 - Thruster/Motor Arming

Current Baseline/Approach (8 of 8)

SATSIM

 Use VME-Based Chassis and Existing Breadboard/Brassboard Hardware As It Becomes Available

Trade Studies

Issues

- Budgeting of RF EAGE Rack
- Retention of ISC, 1553 Bus Access During Spacecraft Integration
- Fidelity of Closed Loop Attitude Modeling/Testing With Spacecraft
- Validation of FAME Instrument After Mate With Spacecraft

Top Level Schedule

